Breve visión de las matemáticas, a partir de la Antigüedad.
Autor: Anónimo.
La Matemática es el estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.
En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización de ambos (como en el álgebra). Hacia mediados del siglo XIX las matemáticas se empezaron a considerar como la ciencia de las relaciones, o como la ciencia que produce condiciones necesarias. Esta última noción abarca la lógica matemática o simbólica —ciencia que consiste en utilizar símbolos para generar una teoría exacta de deducción e inferencia lógica basada en definiciones, axiomas, postulados y reglas que transforman elementos primitivos en relaciones y teoremas más complejos.
Trataremos la evolución de los conceptos e ideas matemáticas siguiendo su desarrollo histórico.
En realidad, las matemáticas son tan antiguas como la propia humanidad: en los diseños prehistóricos de cerámica, tejidos y en las pinturas rupestres se pueden encontrar evidencias del sentido geométrico y del interés en figuras geométricas. Los sistemas de cálculo primitivos estaban basados, seguramente, en el uso de los dedos de una o dos manos, lo que resulta evidente por la gran abundancia de sistemas numéricos en los que las bases son los números 5 y 10.
LAS MATEMÁTICAS EN LA ANTIGÜEDAD.
Las primeras referencias a matemáticas avanzadas y organizadas datan del tercer milenio a.C., en Babilonia y Egipto. Estas matemáticas estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos y sin mención de conceptos matemáticos como los axiomas o las demostraciones.
Los primeros libros egipcios, escritos hacia el año 1800 a.C., muestran un sistema de numeración decimal con distintos símbolos para las sucesivas potencias de 10 (1, 10, 100…), similar al sistema utilizado por los romanos. Los números se representaban escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo del 10 tantas veces como decenas había en el número, y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas… de cada número. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.
Los egipcios utilizaban sumas de fracciones unidad (:), junto con la fracción _, para expresar todas las fracciones. Por ejemplo, _ era la suma de las fracciones _ y _. Utilizando este sistema, los egipcios fueron capaces de resolver problemas aritméticos con fracciones, así como problemas algebraicos elementales. En geometría encontraron las reglas correctas para calcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, por supuesto, pirámides. Para calcular el área de un círculo, los egipcios utilizaban un cuadrado de lado del diámetro del círculo, valor muy cercano al que se obtiene utilizando la constante pi (3,14).
El sistema babilónico de numeración era bastante diferente del egipcio. En el babilónico se utilizaban tablillas con varias muescas o marcas en forma de cuña (cuneiforme); una cuña sencilla representaba al 1 y una marca en forma de flecha representaba al 10. Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como en las matemáticas egipcias. El número 60, sin embargo, se representaba con el mismo símbolo que el 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en el número completo. Por ejemplo, un número compuesto por el símbolo del 2, seguido por el del 27 y terminado con el del 10, representaba 2 × 602 + 27 × 60 + 10. Este mismo principio fue ampliado a la representación de fracciones, de manera que el ejemplo anterior podía también representar 2 × 60 + 27 + 10 × (\), o 2 + 27 × (\) + 10 × (\)-2. Este sistema, denominado sexagesimal (base 60), resultaba tan útil como el sistema decimal (base 10).
Con el tiempo, los babilonios desarrollaron unas matemáticas más sofisticadas que les permitieron encontrar las raíces positivas de cualquier ecuación de segundo grado. Fueron incluso capaces de encontrar las raíces de algunas ecuaciones de tercer grado, y resolvieron problemas más complicados utilizando el teorema de Pitágoras. Los babilonios compilaron una gran cantidad de tablas, incluyendo tablas de multiplicar y de dividir, tablas de cuadrados y tablas de interés compuesto. Además, calcularon no sólo la suma de progresiones aritméticas y de algunas geométricas, sino también de sucesiones de cuadrados. También obtuvieron una buena aproximación de f.
LAS MATEMÁTICAS EN GRECIA.
Los griegos tomaron elementos de las matemáticas de los babilonios y de los egipcios. La innovación más importante fue la invención de las matemáticas abstractas basadas en una estructura lógica de definiciones, axiomas y demostraciones. Según los cronistas griegos, este avance comenzó en el siglo VI a.C. con Tales de Mileto y Pitágoras de Samos. Este último enseñó la importancia del estudio de los números para poder entender el mundo. Algunos de sus discípulos hicieron importantes descubrimientos sobre la teoría de números y la geometría, que se atribuyen al propio Pitágoras.
En el siglo V a.C., algunos de los más importantes geómetras fueron el filósofo atomista Demócrito de Abdera, que encontró la fórmula correcta para calcular el volumen de una pirámide, e Hipócrates de Cos, que descubrió que el área de figuras geométricas en forma de media luna limitadas por arcos circulares son iguales a las de ciertos triángulos. Este descubrimiento está relacionado con el famoso problema de la cuadratura del círculo (construir un cuadrado de área igual a un círculo dado). Otros dos problemas bastante conocidos que tuvieron su origen en el mismo periodo son la trisección de un ángulo y la duplicación del cubo (construir un cubo cuyo volumen es dos veces el de un cubo dado). Todos estos problemas fueron resueltos, mediante diversos métodos, utilizando instrumentos más complicados que la regla y el compás. Sin embargo, hubo que esperar hasta el siglo XIX para demostrar finalmente que estos tres problemas no se pueden resolver utilizando solamente estos dos instrumentos básicos.
A finales del siglo V a.C., un matemático griego descubrió que no existe una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, es decir, una de las dos cantidades es inconmensurable. Esto significa que no existen dos números naturales m y n cuyo cociente sea igual a la proporción entre el lado y la diagonal. Dado que los griegos sólo utilizaban los números naturales (1, 2, 3…), no pudieron expresar numéricamente este cociente entre la diagonal y el lado de un cuadrado (este número, f, es lo que hoy se denomina número irracional). Debido a este descubrimiento se abandonó la teoría pitagórica de la proporción, basada en números, y se tuvo que crear una nueva teoría no numérica. Ésta fue introducida en el siglo IV a.C. por el matemático Eudoxo de Cnido, y la solución se puede encontrar en los Elementos de Euclides.
Eudoxo, además, descubrió un método para demostrar rigurosamente supuestos sobre áreas y volúmenes mediante aproximaciones sucesivas.
Euclides, matemático y profesor que trabajaba en el famoso Museo de Alejandría, también escribió tratados sobre óptica, astronomía y música. Los trece libros que componen sus Elementos contienen la mayor parte del conocimiento matemático existente a finales del siglo IV a.C., en áreas tan diversas como la geometría de polígonos y del círculo, la teoría de números, la teoría de los inconmensurables, la geometría del espacio y la teoría elemental de áreas y volúmenes.
El siglo posterior a Euclides estuvo marcado por un gran auge de las matemáticas, como se puede comprobar en los trabajos de Arquímedes de Siracusa y de un joven contemporáneo, Apolonio de Perga. Arquímedes utilizó un nuevo método teórico, basado en la ponderación de secciones infinitamente pequeñas de figuras geométricas, para calcular las áreas y volúmenes de figuras obtenidas a partir de las cónicas. Éstas habían sido descubiertas por un alumno de Eudoxo llamado Menaechmo, y aparecían como tema de estudio en un tratado de Euclides; sin embargo, la primera referencia escrita conocida aparece en los trabajos de Arquímedes.
También investigó los centros de gravedad y el equilibrio de ciertos cuerpos sólidos flotando en agua. Casi todo su trabajo es parte de la tradición que llevó, en el siglo XVII, al desarrollo del cálculo. Su contemporáneo, Apolonio, escribió un tratado en ocho tomos sobre las cónicas, y estableció sus nombres: elipse, parábola e hipérbola. Este tratado sirvió de base para el estudio de la geometría de estas curvas hasta los tiempos del filósofo y científico francés René Descartes en el siglo XVII.
Después de Euclides, Arquímedes y Apolonio, Grecia no tuvo ningún geómetra de la misma talla.
Los escritos de Herón de Alejandría en el siglo I d.C. muestran cómo elementos de la tradición aritmética y de medidas de los babilonios y egipcios convivieron con las construcciones lógicas de los grandes geómetras. Los libros de Diofante de Alejandría en el siglo III d.C. continuaron con esta misma tradición, aunque ocupándose de problemas más complejos. En ellos Diofante encuentra las soluciones enteras para aquellos problemas que generan ecuaciones con varias incógnitas. Actualmente, estas ecuaciones se denominan diofánticas y se estudian en el análisis diofántico.
Hay mucho más que leer de esta novela… Para descargar el libro completo, hacer clic aquí.
(Si este artículo ha sido de tu agrado, compártelo con tus amistades pulsando el botón “Me gusta”, enviándolo por e-mail a tus amistades, o compartiendo el enlace mediante Facebook, Twitter o Google+. Ah, se toman muy en cuenta y responden todos los comentarios. Gracias)
Autor: Anónimo.
La Matemática es el estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.
En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización de ambos (como en el álgebra). Hacia mediados del siglo XIX las matemáticas se empezaron a considerar como la ciencia de las relaciones, o como la ciencia que produce condiciones necesarias. Esta última noción abarca la lógica matemática o simbólica —ciencia que consiste en utilizar símbolos para generar una teoría exacta de deducción e inferencia lógica basada en definiciones, axiomas, postulados y reglas que transforman elementos primitivos en relaciones y teoremas más complejos.
Trataremos la evolución de los conceptos e ideas matemáticas siguiendo su desarrollo histórico.
En realidad, las matemáticas son tan antiguas como la propia humanidad: en los diseños prehistóricos de cerámica, tejidos y en las pinturas rupestres se pueden encontrar evidencias del sentido geométrico y del interés en figuras geométricas. Los sistemas de cálculo primitivos estaban basados, seguramente, en el uso de los dedos de una o dos manos, lo que resulta evidente por la gran abundancia de sistemas numéricos en los que las bases son los números 5 y 10.
LAS MATEMÁTICAS EN LA ANTIGÜEDAD.
Las primeras referencias a matemáticas avanzadas y organizadas datan del tercer milenio a.C., en Babilonia y Egipto. Estas matemáticas estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos y sin mención de conceptos matemáticos como los axiomas o las demostraciones.
Los primeros libros egipcios, escritos hacia el año 1800 a.C., muestran un sistema de numeración decimal con distintos símbolos para las sucesivas potencias de 10 (1, 10, 100…), similar al sistema utilizado por los romanos. Los números se representaban escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo del 10 tantas veces como decenas había en el número, y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas… de cada número. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.
Los egipcios utilizaban sumas de fracciones unidad (:), junto con la fracción _, para expresar todas las fracciones. Por ejemplo, _ era la suma de las fracciones _ y _. Utilizando este sistema, los egipcios fueron capaces de resolver problemas aritméticos con fracciones, así como problemas algebraicos elementales. En geometría encontraron las reglas correctas para calcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, por supuesto, pirámides. Para calcular el área de un círculo, los egipcios utilizaban un cuadrado de lado del diámetro del círculo, valor muy cercano al que se obtiene utilizando la constante pi (3,14).
El sistema babilónico de numeración era bastante diferente del egipcio. En el babilónico se utilizaban tablillas con varias muescas o marcas en forma de cuña (cuneiforme); una cuña sencilla representaba al 1 y una marca en forma de flecha representaba al 10. Los números menores que 59 estaban formados por estos símbolos utilizando un proceso aditivo, como en las matemáticas egipcias. El número 60, sin embargo, se representaba con el mismo símbolo que el 1, y a partir de ahí, el valor de un símbolo venía dado por su posición en el número completo. Por ejemplo, un número compuesto por el símbolo del 2, seguido por el del 27 y terminado con el del 10, representaba 2 × 602 + 27 × 60 + 10. Este mismo principio fue ampliado a la representación de fracciones, de manera que el ejemplo anterior podía también representar 2 × 60 + 27 + 10 × (\), o 2 + 27 × (\) + 10 × (\)-2. Este sistema, denominado sexagesimal (base 60), resultaba tan útil como el sistema decimal (base 10).
Con el tiempo, los babilonios desarrollaron unas matemáticas más sofisticadas que les permitieron encontrar las raíces positivas de cualquier ecuación de segundo grado. Fueron incluso capaces de encontrar las raíces de algunas ecuaciones de tercer grado, y resolvieron problemas más complicados utilizando el teorema de Pitágoras. Los babilonios compilaron una gran cantidad de tablas, incluyendo tablas de multiplicar y de dividir, tablas de cuadrados y tablas de interés compuesto. Además, calcularon no sólo la suma de progresiones aritméticas y de algunas geométricas, sino también de sucesiones de cuadrados. También obtuvieron una buena aproximación de f.
LAS MATEMÁTICAS EN GRECIA.
Los griegos tomaron elementos de las matemáticas de los babilonios y de los egipcios. La innovación más importante fue la invención de las matemáticas abstractas basadas en una estructura lógica de definiciones, axiomas y demostraciones. Según los cronistas griegos, este avance comenzó en el siglo VI a.C. con Tales de Mileto y Pitágoras de Samos. Este último enseñó la importancia del estudio de los números para poder entender el mundo. Algunos de sus discípulos hicieron importantes descubrimientos sobre la teoría de números y la geometría, que se atribuyen al propio Pitágoras.
En el siglo V a.C., algunos de los más importantes geómetras fueron el filósofo atomista Demócrito de Abdera, que encontró la fórmula correcta para calcular el volumen de una pirámide, e Hipócrates de Cos, que descubrió que el área de figuras geométricas en forma de media luna limitadas por arcos circulares son iguales a las de ciertos triángulos. Este descubrimiento está relacionado con el famoso problema de la cuadratura del círculo (construir un cuadrado de área igual a un círculo dado). Otros dos problemas bastante conocidos que tuvieron su origen en el mismo periodo son la trisección de un ángulo y la duplicación del cubo (construir un cubo cuyo volumen es dos veces el de un cubo dado). Todos estos problemas fueron resueltos, mediante diversos métodos, utilizando instrumentos más complicados que la regla y el compás. Sin embargo, hubo que esperar hasta el siglo XIX para demostrar finalmente que estos tres problemas no se pueden resolver utilizando solamente estos dos instrumentos básicos.
A finales del siglo V a.C., un matemático griego descubrió que no existe una unidad de longitud capaz de medir el lado y la diagonal de un cuadrado, es decir, una de las dos cantidades es inconmensurable. Esto significa que no existen dos números naturales m y n cuyo cociente sea igual a la proporción entre el lado y la diagonal. Dado que los griegos sólo utilizaban los números naturales (1, 2, 3…), no pudieron expresar numéricamente este cociente entre la diagonal y el lado de un cuadrado (este número, f, es lo que hoy se denomina número irracional). Debido a este descubrimiento se abandonó la teoría pitagórica de la proporción, basada en números, y se tuvo que crear una nueva teoría no numérica. Ésta fue introducida en el siglo IV a.C. por el matemático Eudoxo de Cnido, y la solución se puede encontrar en los Elementos de Euclides.
Eudoxo, además, descubrió un método para demostrar rigurosamente supuestos sobre áreas y volúmenes mediante aproximaciones sucesivas.
Euclides, matemático y profesor que trabajaba en el famoso Museo de Alejandría, también escribió tratados sobre óptica, astronomía y música. Los trece libros que componen sus Elementos contienen la mayor parte del conocimiento matemático existente a finales del siglo IV a.C., en áreas tan diversas como la geometría de polígonos y del círculo, la teoría de números, la teoría de los inconmensurables, la geometría del espacio y la teoría elemental de áreas y volúmenes.
El siglo posterior a Euclides estuvo marcado por un gran auge de las matemáticas, como se puede comprobar en los trabajos de Arquímedes de Siracusa y de un joven contemporáneo, Apolonio de Perga. Arquímedes utilizó un nuevo método teórico, basado en la ponderación de secciones infinitamente pequeñas de figuras geométricas, para calcular las áreas y volúmenes de figuras obtenidas a partir de las cónicas. Éstas habían sido descubiertas por un alumno de Eudoxo llamado Menaechmo, y aparecían como tema de estudio en un tratado de Euclides; sin embargo, la primera referencia escrita conocida aparece en los trabajos de Arquímedes.
También investigó los centros de gravedad y el equilibrio de ciertos cuerpos sólidos flotando en agua. Casi todo su trabajo es parte de la tradición que llevó, en el siglo XVII, al desarrollo del cálculo. Su contemporáneo, Apolonio, escribió un tratado en ocho tomos sobre las cónicas, y estableció sus nombres: elipse, parábola e hipérbola. Este tratado sirvió de base para el estudio de la geometría de estas curvas hasta los tiempos del filósofo y científico francés René Descartes en el siglo XVII.
Después de Euclides, Arquímedes y Apolonio, Grecia no tuvo ningún geómetra de la misma talla.
Los escritos de Herón de Alejandría en el siglo I d.C. muestran cómo elementos de la tradición aritmética y de medidas de los babilonios y egipcios convivieron con las construcciones lógicas de los grandes geómetras. Los libros de Diofante de Alejandría en el siglo III d.C. continuaron con esta misma tradición, aunque ocupándose de problemas más complejos. En ellos Diofante encuentra las soluciones enteras para aquellos problemas que generan ecuaciones con varias incógnitas. Actualmente, estas ecuaciones se denominan diofánticas y se estudian en el análisis diofántico.
Hay mucho más que leer de esta novela… Para descargar el libro completo, hacer clic aquí.
(Si este artículo ha sido de tu agrado, compártelo con tus amistades pulsando el botón “Me gusta”, enviándolo por e-mail a tus amistades, o compartiendo el enlace mediante Facebook, Twitter o Google+. Ah, se toman muy en cuenta y responden todos los comentarios. Gracias)
No hay comentarios:
Publicar un comentario
Se agradece cualquier comentario sobre este artículo o el blog en general, siempre que no contenga términos inapropiados, en cuyo caso, será eliminado...